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ACOUSTIC GRAVITY WAVE CHEMISTRY MODEL

FOR THE RAYTRACE CODE

INTRODUCT ION

Nuclear explosions in the atmosphere are known to generate

large amplitude internal gravity waves which propagate great distances

from the explosion point and may cause modification of the ionosphere as

they pass by. Such modifications may result in substantial impact on HF

radio communications that use that part of the ionosphere as a reflecting

point. Typical impacts on HF transmissions include: introduction of

multipath, reduction in the MUF, and changes in absorption.

A detailed computer model has been generated to describe the
dynamics of the acoustic gravity wave from its creation to its propagation

thro)ugh the ionosphere. The model is implemented in the MRC HF

communications computer code RAYTRACE1. This note describes enhancements

to this AGW model to include appropriate F-region electron density deple-

tion chemistry.

BACKGROUND

For distances far from a nuclear explosion little is known
about mechanisms causing the acoustic gravity wave. For distances closer

to the explosion our understanding is better. In the model developed by

McCartor, et al., in Reference 1, available data is combined with the

general theoretical knowledge of the properties of the AGW to describe its

dynamics. Some of the most important properties of an AGW incorporated
into the RAYTRACE model and pertinent to the question of chemistry are:
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1. Long period, freely propagation gravity modes dominate the

distant disturbances launched from low altitude sources 2 .

These modes give a fairly constant period fluctuation at a

fixed range.

2. The long period waves tend to bend around the earth's

surface. 
3

3. The intensity of the AGW disturbances changes with alti-

tude. It tends to grow exponentially with altitude up to

about 300 km and then decreases above 300 km due to viscous

dissipation.

4. Ionospheric plasma driven by atmospheric motion is largely

confined to motion along the magnetic field lines.

5. The disturbances show a nearly sinusoidal variation with

one or two cycles.
4

6. AGW's show a nearly constant period for individual stations

which increased with increasing distances from the burst.

7. The initial motion of the ionosphere (up or down) seemed to

be fixed by the magnetic field orientation.

In general, good aqreement was found between the model and

existing data sets on gravity waves from nuclear explosions. Not included

in the implemented model however is the effect of chemistry on an electron

population when it is pushed into denser atmosphere by gravity wave

passage (property 4 above). F-region recombination chemistry is expected

to greatly deplete the electron density for waves that have sufficient

amplitude to push F-region electron parcels below about 200 km for tens of

minutes.

6
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CHEMISTRY MODEL INCORPORATION

The RAYTRACE computer progran was initially developed by Jones

and Stephenson at the Department of Comnerce 5 for studying HF radio

communications in natural environments and was adapted to handle nuclear
explosion disturbed environments by M. Frolli of Mission Research Corpora-

tion. The program traces rays through an anisotropic medium whose index
of refraction varies continuously in three dimensions. The program calcu-

lates ray paths by numerically integrating Hamilton's equations. It can
represent the refractive index by either the Appleton-Hartree or the Sen-
Wyller formula, and has several ionospheric models for electron density

(including the AGW model), perturbations to the electron density , the

earth's magnetic field, and electron collision frequency.

Since the code performs numerical integration to trace radio

waves along a propaqation path, it takes a number of small tithe steps in
high gradient regions normally encountered in disturbed ionospheres to

assure path correctness. Thus for each small spatial/time step the elec-

tron density and its gradient must be determined. This means that the AGW

electron density model must be called for each integration point two or
more times. Typical single bounce HF transmission calculations through a

disturbed environment may require as many as one hundred thousand calls to

the AGW model. Because of this large number of calls to the model, it was

designed to run extremely fast. It did not contain any F-region chemistry

which would slow the code. There are conditions however such as multiple

bursts, large yields or a path close to a burst when plasma at high alti-

tudes is pushed down to altitudes where an electron depletion can occur in
one or two cycles of the AGW. Under such circumstances the incorporation

of F-region chemistry is necessary to give an accurate picture of the HF
propagation effects. For this reason it was felt that F-region chemistry

should he available as a model option for large yield cases where chemis-

try may be important.

7 4j.



It is important however that the addition of the necessary

chemictry not add significant running time to the AGW model in RAYTRACE.

In fact because of the already substantial run time required to perform a

RAYTRACE calculation through a modestly disturbed environment, the chemis-

try was chosen to be exceedingly simple and include only the dominant

reactions pertinent to electron depletion. Also to avoid undo computa-

tional complexity only the nighttime chemistry (no sources) is presently

implemented in the code.

CHEMISTRY MODEL

The F-region chemistry reactions have been reduced to the

simple set of three reactions:

N2 + 0+ - NO+ + N (la)

02 + 0+  + 02+ + 0 (ib)

NO* + e + N + 0 (2)

where the speed of the first two reactions is much slower than the last

and determines the final electron density, Ne' A solution for the elec-

tron density at any time t given the initial density Neo at t =0 is given

by

Ne = Neo exp(- fadt) (3)

where a is the effective recombination coefficient given by

a = Kj[N 2] + K 2[02] (4)

8
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where

kI = 1.3 x 10 - "2 (5)

and

k2 = 2. 1l01-  (6)

Since the electron parcel is moving up and down with the motion

of the gravity wave, the [N 2] and [02] densities are functions of time.

The procedure developed to estimate densities has been to initi-

ally fit the neutral [N2] and [02] densities with an exponential function

of height h between th regions of 100 and 500 km as:

IN2] = AeBh(t) (7)

Dh(t) (8)
[021 = Ce(8

The recombination coefficient then becomes

(t) = ki AeBh(t) + k2 CeDh(t) (9)

The height, h, is the instantaneous altitude of the air parcel at time t

and is qiven for a single burst by

h(t) = AZ Sintw(t-x/c)} + Z0 (10)mx

where Z is the maximum displacement of the parcel at listance x from the
mx

burst: Zo is the initial height of the air parcel and w is 2nZ/TBx. For

the single burst case using equations (9) and (10), the integral in equa-

tion (3) can be carried out analytically for the case where the wave has

qone through two cycles. The result for ti1.t case is

9



amx = f a(t)dt 2 exp[-KIAeBZ'2-l o(BAZmx]

(11)

+ exp[-K 2 CeOZo2i[ o(DAZx)nx

where Io is the zero order Bessel function with imaginary argument.

The result can be interpolated to a time t between zero and two

cycle, of the AGW by using the following approxi,nation:

t
f Odt = W(t-x/c) a + A[cos(w(t-x/c)-ljcos sinO (12)
0 41 mx

where A is given by the approximate value determined by fittinq equation

(12) to exact calculations as

A = .08 a (13)

is the maqnetic azimuth and 0 is the nagnetic dip angle.

Nirirjl, burst model for integral of a(t) agrees to within a

few percent of the exact value determined by direct time integration of

the dynamical equations. The model runs very quickly requiring only the

evaluation of equations (11) and (1?).

MULTIBURST MODEL CHEMISTRY

The above simnple model is accurate for the single burst model

since the motion of the electron parcel can be closely appra)itited by a

.inqle sinusoidal function that can then be integrated analytically. For

the multiburst case the -notion of the electrom parcel is the result of a

InI
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minutes after the passaqe of a very large amplitude gravity wave. The

wave resulted from a combination of 100 MT and 30 MT explosions detonated

in a region about the zero tic on the fiqure. (Details of the explosion

scenario have been discussed in Reference 1.)

Figure 4 shows critical frequency contours without the effect

of chemistry. Figure 5 shows the same region and time but with the F

region chemistry included. The chemistry model assumes a night time iono-

sphere with no electron production sources. It is seen in Figure 10 that

larqe regions of electron depletion (small critical frequency) remain

after the passage of the gravity wave. These regions persist for the

entire night. As the wave continues to move outward from the explosion

point it continues to create an expanding depletion region. This depletion

reqion resulting from the inclusion of chemistry considerably simplifies

the disturbed electron density height profile that would have been present

from the passage of the gravity wave without chemistry (Figure 4). The

simplified electron density height profile may reduce the absorption and

multipath but may tend to increase the doppler shift in the HF signal.

Electron density time histories for the multiburst scenario

used to generate Figures 4 and 5 are given in Figures 6 throuqh 11 for

slices at three heights. Figures 6, 7 and 8 show electron density time

histories at 250, 350 and 450 km respectively with the chemistry turned

on. Figures 9, 10, and 11 show the same slices but without chemistry. At

250 km altitude electron density is entirely depleted after the passaqe of

the qravity wave. At higher altitudes there is less affect on the elec-

tron density resulting in an occasional depletion hole.

SINGLE BURST EXAMPLE

The effect of the passage of a qravity wave through a section

of the ionosphere can be seen somewhat more clearly by lookinq at the

18
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The amplitude value, <AZmx>, is the frequency weighted mean amplitude of

events

NB Z NB<AZ > = amx / I (IL (16)

mx W.=1 W.i i

is the minimum of the w.s for the interval, and max is the distance

associated with the w. minimum.1

An example of the motion of a parcel during multiburst scenario

is given in Figure 1. Three events were interacting; they had yields of

10 Mt, 1200 km due north of the point of interest, 15 Mt, 1500 km nearly

due south, and 5 Mt 2000 km at 60 degrees azimuth.

The approximate fit to the parcel height using the multiburst

model is given in Figure 2. In general the fit is quite good except for

a single region near 5000 seconds where equal and nearly opposite motion

drive the parcel in a way that cannot be well predicted by the simplified

model.

Figure 3 shows the exact integral of a(t) (eq(12)) for the

multiburst case. The approximate integral is given by the X marks for

selected times. The fit of the integral is more accurat- than our know-

ledge of either the neutral atmospheric model or the simplified chemistry

model.

COMPARISON OF AGW ENVIRONMENTS WITH AND WITHOUT CHEMISTRY

Examples of the effect of F-region chemistry in the wake of a

large amplitude gravity wave are seen by examining Figures 4 and 5.

Figure 4 shows the critical frequency contours at 15 minutes and 30

12
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superposition of multiple sinusoidal functions that in general will have

distinct amplitudes, periods, phases and arrival times at the point of

interest. Thus for multiple bursts the model becomes somewhat more

complicated but can still be made to maintain most of the character of

single burst chemistry model.

The primary consideration in the multiburst case is to get an

accurate time history of the vertical motion of the p'drcel at the point of

interest. This motion which is the result of the passage of the multiple

AGW's past the point of interest can be expressed as the sum of sin,, wawPs

i. e.,

NB

h(t) - e xZ sinwi(t - Xi/C) + Z0  (14)
= x mi

where index, i, runs over all bursts that have

_<t< x+- ) 
(15)

c c Z

Using equatiol (14) in equation (9) results in an integral that cannot be

evaluated exactly. A procedure was adopted where the summation is aiprox-

imated over a few discrete intervals over which the integral can be done

analytically. The intervals are determined by the arrival times of 'he

gravity waves from the various bursts and the departure of the waves.

Essentially a new interval is created when either a wave arrives or ieaves

the parcel region of interest. In a given interval the parcel position is

given by

h(t) = <AZ > sino( max) + Z 0mx c

11 o



effect of the gravity wave from a ,',nql 5hr,t. Fiqures 12 and 13 show

contours of critical frequency withnit ir,d with chemistry respectively

after the passage of a gravity wave 30 minutes after a 4 Mt surface explo-

sion. As in the multiburst case the ionosphere is qreatly disturbed. The

chemistry has the effect of depleting the electrons below about 250 km as

seen in Figure 13.

The effect on propagation through the two environments shown in

Figures 12 and 13 is illustrated in Figures 14 and 15 respectively by a

fan of rays at 15 MHz propagating in a southward direction from a trans-

mitter located at the burst point. To avoid a confusing number of lines

on one plot, only the rays are plotted and not the critical frequency

contours. Propagation paths can be correlated to environment by overlaying

the ray paths on the appropriate Figure 12 or 13. Contrary to our initial

expectations, the introduction of chemistry does not greatly improve the

number of HF radio waves that propagate, although the environment is

greatly simplified and many gradients are removed. The introduction of

chemistry does improve somewhat the distance of waves that do prnpagate

merely because it moves the reflection layer higher.

The effect of the chemistry is further illustrated by electrnn

density heiqht profiles shown in Figures 16 and 17 for the single burst

scenario. The profiles shown are considered nighttime profiles that have

densities normally seen in daytime. They are taken at a point 1000 Km

squth -f the hurst point at times labeled on the figures. Fach profile at

.dirij times is offset by 10 from the previous time to accommodate

tt'tn many times on a single frame. The profiles that result from the

oac> io' of the qravity wave when no chemistry is running are fairly smooth

wi*i h iqht. Profiles that result when chemistry is running have large

reductions in density between 100 km ( the bottom of the model) and about

250 km. The straight vertical line in the profiles taken with chemistry

indicate that the electron density is pegged at 1000 cm**-3.

25 :



0 500100015002000

Figure 1?. Contours of critical froquency from passage of a gravity wave
from a single 4 tRt explosion. No chemistry calculations are
performed.

0 20

Figure 13. Same as Figure 12 except with chemistry turned on.

26
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500 1000 1500
0 2000

Figure 14. A fan of HF propagation rays at 15 MHz transmitted from ground
zero through the electron environment described in Figure 12.

0 2000

Figure 15. Same as Figure 14 except that rays are propagating through the

environment in Figure 13.
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CHEMISTRY MODEL DEFICIENCIES

A major drawback of the model as it is now implemented is that

the chemistry model is very simple and the ionosphere is not always stable

to application of the model. This defect can be overcome by putting an

ionosphere into the code and running it for a sufficiently long simulation

time to bring the ionosphere to equilibrium and then using this ionosphore

as the one through which the gravity wave propagates. This method has the

defect that the exact ionospheric conditions desired may not be simulated.

A more correct procedure would be to modiFy thf chemistry such that the

user-specified ionosphere is left stable. This procedure is considerably

more difficult than modifying the ionosphere to fit the simple chemistry

and it may also add considerable run time to a RAYTRACE calculation.

IMPLEMENTATION OF AGW CHEMISTRY INTO RAYTRACE CODE

The RAYTRACE code is organized in a modullar ft.,,ii)n so that cal-

culations can be performed using input-selected environment models for

electron density and electron density perturbations.

There is only one input flag that needs to he set to turn on
the AGW c)e.,,i1ry ndel and that is word 103 in the "W" array which is

loaded on input (see the RAYTRACE documentation,reference 6). The inter-

nal flag nane is CHMFLG. AGW chemistry is turned on when W103 (CHMFLG) is

set to 1. No other parameters or data are required to run the AGW chemis-

try.

30
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